Non-integer numbers conversion - Computational Mathematics CM1015

Non-integer numbers conversion


Example:

$ 17.375_{10} = 1*10^1 + 7*10^0 + 3*10^{-1} + 7*10^{-2} + 5*10^{-3} = $
$ = 10 + 7 + \frac{3}{10} + \frac{7}{100} + \frac{5}{1000} $

How do you convert decimal fractions to binary?


You convert the whole integer numbers separately:

$ 17_{10} = 10001_2 $

Then you convert fractional part 0.375_{10}:
Multiply by 2, see if you have a whole number 1:
0.375*2 = 0.75 = 0 + 0.75 
0.75*2   = 1.5   = 1 + 0.5 Multiply the remainder of 0.75
0.5 *2    = 1.0   = 1 + 0.   STOP

$ 0.375_{10} = 0. \color{red} {011}_2 $ 
$ 17.375_{10} = 10001. \color{red} {011}_2  $

How to convert a binary fractional number to a base 10 number?

$  10001. \color{red} {011}_2  = 1*2^4 + 0*2^3 + 0*2^2 +  0*2^1 + 1*2^0 + \color{red} { 0*2^{-1} + 1*2^{-2} + 1*2^{-3} }$
$  10001. \color{red} {011}_2  = 1*16+ 0*8 \ + 0*4 \  + 0*2 \ + 1*1 + \color{red} { 0* \frac{1}{2} + 1*\frac{1}{4} + 1*\frac{1}{8} }$
$ 10001. \color{red} {011}_2  = 16 + 1 + \color{red} { \frac{0}{2} + \frac{1}{4} + 1*\frac{1}{8} }$
$ 10001. \color{red} {011}_2  = 17 + \color{red} {   \frac{3}{8}   } $ 
$ 10001. \color{red} {011}_2  = 17. \color{red} { 375}_{10} $


In general:

$$ A_n A_{n-1} A_{n-2} ... A_0 . C_{-1} C_{-2} ... C_{-k} $$

for base b, and position n and k,

In decimal units corresponds to:


$$ A_n * b^n + A_{n-1} * b^{n-1} + ... +  A_0 * b^0 + C_{-1} * b^{-1} + C_{-2} * b^{-2} + ... + C_{-k} * b^{-k}   $$


Practice:
see reference 2

Convert the decimal number 11.625 into binary

$ 11 \color{red} {.625}_{10} $
$ 11_{10} = 1011_2 $
$  \color{red} {.625}_{10} = $
Multiply by 2 and carry over the remainder:
2*0.625 = 1.25 = 1 + 0.25
2*0.250 = 0.50 = 0 + 0.50
2*0.500 = 1.00 = 1 + 0.00 // STOP

$ 11 \color{red} {.625}_{10} = 1011. \color{red} {101}_2$






What is the decimal number 0.03125 in binary?

$ 0.03125_{10} = ? $ in  binary 
Multiply by 2 and carry over the remainder:

2 * 0.03125 = 0.0625 = 0 + 0.0625
2 * 0.06250 = 0.1250 = 0 + 0.1250
2 * 0.12500 = 0.2500 = 0 + 0.2500
2 * 0.25000 = 0.5000 = 0 + 0.5000
2 * 0.50000 = 1.0000 = 1 + 0.0000 // STOP

$ 0.03125_{10} = 0.00001_2 $





Operations with binary numbers

See reference 3

Addition of binary numbers


$ 101_2 + 111_2 = ? $

$ 1110 $ \\ carry-over numbers
$ 0101_2 + $
$ 0111_2 = $
$ \overline{1100}_2  $

$ = 1*8 + 1*4 + 0*2 + 0*1 = 12_{10} $

double-check in decimal: 5 + 7 = 12 
Q.E.D.

Subtraction of binary numbers


$ 110_2 - 101_2 = ? $


$ 110 - $ \\ 6 decimal
$ 002 -  $  \\ promoted numbers
$ 101 = $ \\ 5 decimal
$ \overline{0 0 1}_2 $ \\ 1 decimal

Multiplication of binary numbers

0*0 = 0
1*1 = 1
1*0 = 1


Exercise:

1111 * 11 = 101101
15 * 3 = 45





Division of binary numbers




Number bases webinar video

See reference 4






"The only time you are getting better is when you are stuck.
- So, embrace being stuck! "



Extra video: numbers 1

See reference 5

  • prime numbers
  • highest known prime number $ 2^{77232917} - 1$
  • exponentials
    • $ x^0 = 1 $
    • $ x^1 = x $
    • $ x^2 = x * x $
    • $ x^{-1} = \frac{1}{x} $
    • $ x^{-2} = \frac{1}{x*x} = \frac{1}{x^2} $
    • $ x^{-n} = \frac{1}{x^n} $



    Extra video: numbers 2

    see reference 6

  • base ten fractional
  • what is the lowest base you can have
    • base 2
  • conversion exercises




see reference 7




See reference 8







References

  1. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/wrj47/non-integer-numbers-conversion
  2. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/quiz/QW8GL/topic-1-lesson-3
  3. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/0qco4/operations-with-binary-numbers
  4. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/y71es/number-bases-webinar-video
  5. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/K02pr/extra-video-numbers-1
  6. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/lHwNt/extra-video-numbers-2
  7. https://docs.google.com/spreadsheets/d/19zWX5qNcfVwG37VUSi0aeCMfNSOwhq1MMNtdwguyk5k/edit#gid=0
  8. https://calculator.name/baseconvert/quinary/decimal/1212



As an Amazon Associate I earn from qualifying purchases.

My favorite quotations..


“A man should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is for insects.”  by Robert A. Heinlein

"We are but habits and memories we chose to carry along." ~ Uki D. Lucas


Popular Recent Articles