Set Theory - Discrete Mathematics

 

Set Theory - Introduction to discrete mathematics


integers, propositions, sets, relations, and functions, which are all discrete.


the fundamental concept of sets, functions, logic, graphs, trees, relations,
combinatorics, mathematical induction, and recursive relations.

Syllabus




Webinar

Review before the midterm and final exam!






What is the definition of Sets?



A set is a collection of distinct items. Sets are used to study a relation between object members in a particular domain. [reference 1]


Set theory is a branch of mathematics that deals with properties of well-defined
collection of objects. 

Mathematicians use, the term is set to refer to a well-defined, unorderedcollection of any kind of object, duplicates are allowed.

The empty set is a set that contains nothing.


Examples

vowels V = {a,e,i,o,u}
empty set E = {} = $ \emptyset $ or $ \varnothing $

Set notation
  • an element of a set
    • belongs in $ \in $
    • not belong in $ \notin $
  • the cardinality of a set
    • Definition: Given a set S, the cardinality of S is the number of elements contained in S. We write the cardinality of S as |S|.
    • Given V = {a,e,i,o,u}; |V| = 5
    • |E| = |{}| = $ | \emptyset | $  = $ | \varnothing | $ = 0

Subset


Definition:
    • A is a subset of B if every element of A also belongs to B.
      • A is also an element of B.  $ A \subseteq B $
      • subset \subset
      • not subset equal $ \not \subseteq$
      • subset not equal $ \subsetneqq $
      • subset not equal $ \subsetneq $
      • if V = {a,e,i,o,u} AND W={u,w}$ \implies W \subsetneq V $
$$ A \subseteq B \iff x \in A \ \implies \ x \in B $$
for any x of A
A is a subset of B if and only if any x belonging to A implies that x also belongs to B.


An empty set is a subset of ANY set A

Empty = {} = $ \emptyset $ or $ \varnothing $

$ \varnothing \subseteq A $ 
$ \varnothing \subseteq  \varnothing $

Any set is a subset of itself:

$ S \subseteq  S $

  • Special sets
    • N all natural numbers N = {1,2,3,..., \infty}
    • Z all integers $ \mathbb{Z} $ = {..., -3,-2,-1,0, 1,2,...}
      • The notation $ \mathbb{Z} $ for the set of integers comes from the German word Zahlen, which means "numbers".
      • positive integers < 4 = {2}
    • Q all rational numbers such as a/b where $ b \neq 0$
      • $ Q = \{ \frac{n}{m} | n,m \in \mathbb{R} \ and \  m \ne 0  \} $
    • R or $ \mathbb{R} $ all real numbers
In mathematics, a real number $ \mathbb{R} $ is a value of a continuous quantity that can represent a distance along a line (or alternatively, a quantity that can be represented as an infinite decimal expansion). [reference 2]

$$ \therefore N \subseteq Z \subseteq Q \subseteq \mathbb{R} $$







The listing method and rule of inclusion




  • Set representation
    • Listing method
      • list all elements of the set
        • V = {a,e,i,o,u}
    • Set builder notation
      • example $ Even = \{ 2n | n \in \mathbb{R} \} $ 
      • example $ Odd = \{ 2n+1 | n \in \mathbb{R} \} $ 
      • Q all rational numbers = $ Q = \{ \frac{n}{m} | n,m \in \mathbb{R} \ and \  m \ne 0  \} $



Examples

$ S_1 = \{ 3n | x \in \mathbb{N} \ and \ n < 6 \} \implies $ 
$ S_1 = \{ 3*1, 3*2, 3*3, 3*4, 3*5 \} \implies  $
$ S_1 = \{ 3, 6, 9, 12, 14 \}  $


$ S_2 = \{ 2^n | n \in \mathbb{Z} \ and \ 0 \le n \le 4 \} \implies $ 
$ S_2 = \{ 2^0, 2^1, 2^2, 2^3, 2^4 \} \implies  $
$ S_2 = \{ 1, 2, 4, 8, 16 \}  $

Important:
$ S_3 = \{ 2^{-n} | n \in \mathbb{Z} \ and \ 0 \le n < 5 \} \implies $ 
$ S_3 = \{ 2^0, 2^{-1}, 2^{-2}, 2^{-3}, 2^{-4} \} \implies  $
$ S_3 = \{ 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \}  $

$ S_4 = \{ \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8},  \frac{1}{10} \}  \implies $
$ S_4 = \{ \frac{1}{2*1}, \frac{1}{2*2}, \frac{1}{2*3}, \frac{1}{2*4} , \frac{1}{2*5} \}  \implies $
$ S_3 = \{ \frac{1}{2*N} | n \in \mathbb{Z} \ and \ 1 \le n \le 5 \}  $ 













The powerset of a set









A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {
         {1, 2, 3, 4}
         {5, 6,} 
         {7, 8, 9}
}
X = {1, 2, 3, 4}
$ X \subseteq A, \ but \ X \in B $
Read: X is a subset of A, but it is an element of B.

Set S is not an element of S:
$ S = \{1\} \notin S $

An empty set is not an element of the empty set:
$ \varnothing \notin \{\} $
An empty set is a subset of the empty set:
$ \{\} = \varnothing \subseteq \varnothing $


  • The power set of the set
    • definition:
      • Given a set S, the powerset of S, written P(S),
        is the set containing ALL the subsets of S.
      • Given S = {1, 2, 3}
        • all subsets:
          • {}
          • {1}, {2},{3}
          • {1,2},{1,3},{2,3}
          • {1,2,3}
        • then P(S)={{},{1}, {2},{3},{1,2},{1,3},{2,3},{1,2,3}}






Cardinality

see reference #3

given a set S={1, 2, 3}, 
  • then P(S) = $ 2^{|S|} $
  • P(S)={{},{1}, {2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  • |P(S)| = 2^{|S|} = $ 2^3 = 8  $


Given a set A, if |A| = n, find |P(P(P(A)))| :
  • $ |P(A)| = 2^{|A|} = 2^n $
  • $ |P(P(A))| = 2^{|P(A)|} = 2^{2^n} $
  • $ |P(P(P(A)))| = 2^{|P(P(A))|} = 2^{2^{2^{n}}} $


Powers of 2

$ 2^0 = 1 $
$ 2^1 = 2 $
$ 2^2 = 4 $
$ 2^3 = 8 $
$ 2^4 = 16 $
$ 2^5 = 32 $
$ 2^6 = 64 $
$ 2^7 = 128 $
$ 2^8 = 256 $
$ 2^9 = 512 $
$ 2^{10} = 1,024 $
$ 2^{11} = 2,048 $
$ 2^{12} = 4,096 $
$ 2^{13} = 8,192 $
$ 2^{14} = 16,384 $
$ 2^{15} = 32,768 $
$ 2^{16} = 65,536 $
$ 2^{17} = 131,072 $
$ 2^{18} = 262,144 $
$ 2^{19} = 524,288 $
$ 2^{20} = 1,048,576 $


Example: 
Given a set A with 12 elements( |A| ). 
What is the number of elements (cardinality) in a powerset P(A)?

n = 12
$ |P(A)| = 2^{|A|} = 2^n = 2^{12} = 4096 $


Set Operations


Disjointed Sets (nothing in common)


Definition: 

Two sets are disjointed if the intersection is zero.

$$ A \cap B = \varnothing $$ 


Set Union (all together)

Definition: 
Given two sets A and B,
the union of A and B, written $ A \cup B $,
contains all the elements in either A or B.

$$ A \cup B = \{x | x \in A \ or \ x \in B \} $$

A = {1, 3, 5}
B = {3, 4, 6}
$ A \cup B $ = {1, 2, 3, 4, 5, 6}


Set Intersection (common)


Definition:
Given two sets A and B,
the intersection of A and B, written $ A \cap B $,
contains all the elements in both A and B.

$$ A \cap B = \{ x | x \in A \ and \ x \in B \} $$

A = {1, 2, 3}
B = { 3, 5, 6}
$ A \cap B $ = {3}




Set Difference (one but not the other)

Definition:
Given two sets A and B,
the set difference, written $ A - B $,
contains all the elements that are in A, but not in B.

$$ A - B = \{ x | x \in A \ and \ x \notin B \} $$

A = {1, 2, 3}
B = { 3, 5, 6}
$ A \cap B $ = {1, 2}

LaTeX \setminus == "$ \setminus $" 

Symmetric difference (owned separately)


Definition:
Given two sets A and B,
the symmetric difference, written $ A \oplus B $,
contains all the elements that are in A or in B, but not in both.

$$ A \oplus B = \{ x | ( x \in A \ or \ x \in B ) \ and \ x \notin A \cap B  \} $$

$$ A \oplus B =  ( A \cup B ) - ( A \cap B ) $$

A = {1, 2, 3}
B = { 3, 5, 6}
$ A \cap B $ = {3}
$ A - B $ = {1, 2}
$ B - A $ = {5, 6}
$ A \oplus B $ = (A-B) + (B-A)
$ A \oplus B $ = {1, 2, 5, 6}


LaTeX symbol substitutes for symmetric difference (see reference 4):
  • A \oplus B == "$ A \oplus B $"
  • A \triangle B == "$ A \triangle B $"
  • A \Theta B == "$ A  \Theta B $"
  • A \triangledown B  == "$ A \triangledown B $"





Membership Table














Disjoint Sets

See reference 5.
In mathematics, two sets are said to be disjoint sets if they have no element in common.
Equivalently, two disjoint sets are sets whose intersection is the empty set

For example, 
A = {1, 2, 3} and 
B = {4, 5, 6} are disjoint sets, 
$ A \cup B = \{\} = \varnothing $

while {1, 2, 3} and {3, 4, 5} are not disjoint.






The representation of a set using Venn diagrams


See reference 6.





The universal set is marked as U.
The set A is a subset of U, or $ A \subseteq U $.

The complement of a set A, written $ \complement{A} \ or \ \bar{A} \ or \ \overline{A} $,
contains all the elements in the universal set U, but not in set A.

$$ \complement{A} = \overline{A} = U-A $$

$$ \overline{A} \cup A = U $$

$$   \overline{A} \cap A = \varnothing $$

Example:

U = {1, 2, 3, 4, 5, 6, 7, ...} positive integers
A = {2, 4, 6, 8, ...} positive even integers

then,
$ \overline{A} = \{1, 3, 5, 7, 9, ... \}$ positive odd numbers 





Example:

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7, 8, 9, 10}
$ A \cap B $ = {4, 5}
$ \overline{A \cap B} $  = {1, 2, 3, 6, 7, 8, 9, 10}


Example:

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7}
C = {3, 5, 7, 8}

$ D = B \cup C $ =  {4, 5, 6, 7, 3, 5, 7, 8} = {3, 4, 5, 6, 7, 8 }
$ A \cap D $ = {3, 4, 5}
$ \overline{A \cap (B \cup C)} $ = $ \overline{A \cap D} $ 
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - {3, 4, 5} = 
= {1, 2, 6, 7, 8, 9, 10}

tip: Use LaTeX \overline{A} = $ \overline{A} $ = long \bar{A} = $ \bar{A} $





Augustus De Morgan's laws



See reference 7.

Definition:
The union of the sets is equal to the intersection of their complements.
$$ \overline{A \cup B} = \bar{A} \cap \bar{B} $$































Definition:
The complement of the intersection of two sets A and B
is equal to the union of their complements.
$$ \overline{ A \cap B } = \bar{A} \cup \bar{B} $$








Exercise:




U = {1, 2, 3, 4}
A = {1, 2}
B = {2, 3}
$ \overline{A} $ = {3, 4}
$ \overline{B} $ = {1, 4}
$ \overline{A} \cup \overline{B} $ = {1, 3, 4}

Compliment of the union of compliments:
$ \overline{ \overline{A} \cup \overline{B} } $ = {2}


Intersection, or $ A \cap B $ = {2}

ergo:

$$ \overline{ \overline{A} \cup \overline{ B} } = A \cap B $$


Exercise:



U = {1, 2, 3, 4}
A = {1, 2}
B = {2, 3}
$$ A \cap \overline{ \overline{A} \cup  \overline{B}}  = ? $$

$ \overline{A} $ = {3, 4}
$ \overline{B} $ = {1, 4}
$ \overline{A} \cup \overline{B} $ = {1, 3, 4}

$ \overline{ \overline{A} \cup  \overline{B}}  = \{2\} $

$  A \cap \overline{ \overline{A} \cup  \overline{B}}  =  A \cap \{2\} = \{1, 2\} \cap \{2\} = \{2\} $

$  \{2\} = A \cap B $

ergo:
$$ A \cap \overline{ \overline{A} \cup  \overline{B}}  = A \cap B $$




Exercise:
Given two sets A and B,
What is the complement of the union of their complements?

$$ \overline{ \overline{ A} \cup \overline{ B} } =  A \cap B $$


Proof with Vann diagram:

$ \overline{ \overline{ A} \cup \overline{ B} } = ? $

$ \overline{A} = \{3, 4\} $
$ \overline{B} = \{1, 4\} $
$  \overline{ A} \cup \overline{ B} =  \{1, 3, 4 \} $
$   \overline{ \{1, 3, 4 \} } = \{2 \}$
$ \overline{ \overline{ A} \cup \overline{ B} } = \{2\}  = A \cap B $






$ A - \overline{B} = \{1, 2 \} - \{ 1, 4 \} =  {4} = \overline{ A \cup B}$


Exercise:

Set difference of set differences

$$  \overline{ (A-B) - (B-C) } = ? $$

Venn diagram proof:
$ (A-B) = \{1, 3 \} $
$ (B-C) = \{2, 5 \} $
$ \{1, 3 \} - \{2, 5 \} = \{1, 3 \}$
$  \overline{ (A-B) - (B-C) } =  \overline{ \{1, 3 \} } = $


 









Laws of sets: Commutative, associative, and distributives

See reference 8.

Commutative

Definition:
order does not affect the outcome. 





Commutative:
  • addition 2+3 = 3+2
  • multiplication 2*3 = 3*2
  • union $ A \cup B = B \cup A $
  • intersection $ A \cap B = B \cap A $
  • symmetric difference $ A \oplus B = B \oplus A $


Not commutative:
  • Subtraction $ 3-1 \neq 1-3 $
  • Set difference $ A-B \neq B-A $

Associativity

Definition:
concerns the grouping of elements in an operation.






Associative:
  • addition (a+b)+c = a +(b+c)
  • multiplication (a*b)*c = a *(b*c)
  • union $ (A \cup B) \cup C = A \cup (B \cup C) $
  • intersection $ (A \cap B) \cap C = A \cap (B \cap C) $
  • symmetric difference $ (A \oplus B) \oplus C = A \oplus (B \oplus C) $
Not associative
  • set difference $ (A - B) - C \neq A - (B - C) $



Distributivity


Definition: 
multiplying a sum is equal to multiplying each number and adding the sum





$$ a(b+c) = ac + ac $$

3*(2+5) = 3*2 + 3*5 = 21 



$$ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) $$









$$ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) $$








Using set identities to simplify expressions














Prove


$$ \overline{(A \cap B) \cup \overline{B}} = B \cap  \overline{A}$$

$ \ \ \ \ \overline{(A \cap B) \cup \overline{B}} = $
$ =  \overline{ (A \cap B )} \cap \overline{\overline{B}} $ - De Morgan's law
$ =  \overline{ (A \cap B )} \cap B $
$ = ( \overline{A} \cup \overline{B} ) \cap B $ - De Morgan's law
$ = B \cap (\overline{A} \cup \overline{B}) $ - commutative
$ = (B \cap \overline{A}) \cup (B \cap \overline{B}) $ - distributive
$ = (B \cap \overline{A}) \cup \ \varnothing $
$ = B \cap \overline{A} $  



Exercise

$ A \cap ( B \cap \overline{A} ) = $
$ = (A \cap B) \cap ( A \cap \overline{A} ) $
$ = (A \cap B) \cap \varnothing =  \varnothing $ !

OR 

$ A \cap ( B \cap \overline{A} ) = $
$ = A \cap B \cap \overline{A} = $
$ = B \cap A \cap \overline{A} = $
$ = B \cap \varnothing = \varnothing $ !


Exercise


$ \overline{ \overline{A \cup B} \cup \overline{A} } $
$ \overline{A \cup B } = \{4\} $ - Vann diagram
$ \overline{ \{4\} \cup \overline{A} } = $ 
$ \overline{ \{4\} \cup \{3, 4\} } =  \{3, 4 \} = \overline{A}  $ !


Exercise
$ \overline{ (A - B) - (B-C)  } $


Exercise:

$ \overline{ \overline{A \cup B} \cup \overline{B} } $
$ \overline{A \cup B} = \{ 4 \} $
$ \overline{B} = \{1, 4 \} $
$ \overline{A \cup B} \cup \overline{B} = \{ 1, 4 \} =  \overline{B} $
$ \overline{ \overline{A \cup B} \cup \overline{B} }  =  B = \{2, 3 \} $ !

Exercise:



$ \overline{ A \cup \overline{B} \cup C } \cap  \overline{B} $
$  U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \} $
$  \overline{B} = \{ 1, 3,  7, 8 \} $
$  A = \{ 1, 2, 3, 4 \} $
$  C = \{ 3, 4,  6, 7 \} $
$ \overline{ \{ 1, 2, 3, 4 \} \cup \{ 1, 3,  7, 8 \} \cup \{ 3, 4,  6, 7 \}} \cap  \{ 1, 3,  7, 8 \} $
$ \overline{ \{ 1, 2, 3, 4, 6, 7, 8 \} } \cap  \{ 1, 3,  7, 8 \} $
$ \{ 5, 6 \} \cap \{ 1, 3, 7, 8 \} = \varnothing  $

Exercise:

$ A \cup ( B \cup \overline{A}) = $
$ A \cup  B \cup \overline{A} = $
$ B \cup A \cup   \overline{A} = $
$ B \cup \varnothing  =  B$  
Q.E.D.


Tip: Q.E.D. QUOD ERAT DEMONSTRANDUM means "Which was to be demonstrated."


Partition of a set

See reference 9.


Definition:

A partition of set A,
is a set of subsets $ A_i $ of A such that:
all the subsets $ A_i $ are disjointed,
and the union of all subsets $ A_i $ is equal to A.


Exercise

Hint: Use the inclusion-exclusion principle (IEP):
$ | A \cup B | = | A | + | B | - | A \cap B | $
The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. 
https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle

Given three sets A, B, and C, prove that:

I could not find the use for associativity of the union, so I just show it here:
$  | C \cup (A \cup B) | = | A\cup B \cup C | = $
1. Using IEP, split above:
$ = | A\cup B | + | C | - | (A \cup B) \cap C | = $
2. Using IEP, split $ | A\cup B | $ above:
$ | A \cup B | = | A | + | B | - | A \cap B | $
3. Combine the two terms:
$ = | A | + | B | - | A \cap B | + | C | - | (A \cup B) \cap C | = $
4. Use associativity of addition for arranging the terms:
$ = \color{green}{ | A | + | B | + | C | - | A \cap B | } - | (A \cup B) \cap C | = $
5. Using distributivity of the intersection, split the last union:
$ | (A \cup B) \cap C | =  | ( A \cap C ) \cup ( A \cap B) | $
6. Using IEP, split the term
$ =  | ( A \cap C ) \cup ( A \cap B) |  =  | A \cap C | + | A \cap B | - | A \cap C) | \cap | A \cap B |$
7. Combine the terms 
$ = \color{green}{ | A | + | B | + | C | - | A \cap B |  -  | A \cap C | + | A \cap B | } - | A \cap C | \cap | A \cap B | $
8. Using commutativity of the intersection law (clearly proven by Vann diagram):
$ | A \cap C | \cap | A \cap B | =  | A \cap B \cap C | $
9. Combining the terms:
$ = \color{green}{| A | + | B | + | C | - | A \cap B |  -  | A \cap C | + | A \cap B | -  | A \cap B \cap C |  } $
Q.E.D.
 


Visual proof of the same:
$ | A\cup B \cup C | = $ using IEP, see Venn diagram below for reference
$ = | A | + | B | + | C | $ - accounts for all sets, but double counts subsets 2, 3, 6 and triple counts subset 4
resulting in:
$ = | S_1 | + | S_2 | + | S_2 | + | S_3 | + | S_3 | + | S_4 | + | S_4 | + | S_4 | +  | S_6 | + | S_6 | $
to correct that:
$ - | A \cap B | $ remove one double counted subsets 2, 4
$ - | A \cap C | $ remove one double counted subsets 3, 4
$ - | B \cap C | $ remove one double counted subsets 6, 4
but at this point, we removed all three $ S_4 $ so we have to add:
$ + | A \cap B \cap C |$ intersection of all set resulting in subset 4
$ = | A | + | B | + | C | - | A \cap B | - | A \cap C | - | B\cap C | + | A \cap B \cap C | $
E.Q.D.











Exercise:

Given A (even numbers) and B (odd numbers) which are subsets to the universal Integer set U,
$$ U = \{x: x \in \mathbb{Z} \ and \ 0 \leq x < 20 \} $$

Therefore: 
$ U = \{0, 1, 2, 3, ..., 18, 19 \} $
$ A = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18 \} $ assuming even numbers include zero 0
$ B = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19 \} $
$ A\cup B = U $ 
$ A\cap B = \varnothing $ empty set
$ \overline{B} = A $

Use the listing method to list the elements of the following sets:
$ A \cap \overline{B} = \{0, 2, 4, ..., 16, 18 \} \cap \{ 0, 2, 4, ..., 16, 18 \} = A = \{ 0, 2, 4, ..., 16, 18 \} $
$ \overline{A \cap B} =  \overline{ \varnothing } = \overline{ \{\} } = U = \{0, 1, 2, 3, ..., 18, 19 \} $
$ \overline{A \cup B } =  \overline{ U } = \overline{\{0, 1, 2, 3, ..., 18, 19 \}} = \{\} =  \varnothing $
$ \overline{A \oplus B} =  U - (A \cup B)  + ( A \cap B) = \{\} = \varnothing $






Peer reviews



Read Book


Discrete Mathematics with Applications
Thomas Koshy
https://ebookcentral.proquest.com/lib/londonww/detail.action?docID=294091#




pp.70-71, 71-73, and 78-86.

Please also complete the following exercises:

pp.93, exercises 5–14, 27-32, and 57-60.




Review Problem Sheet

TODO: review and document






Cartesian Product of A and B




Summative Quiz




TODO



Webinar


https://www.coursera.org/learn/uol-discrete-mathematics/lecture/B7F94/webinar









References





As an Amazon Associate I earn from qualifying purchases.

My favorite quotations..


“A man should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is for insects.”  by Robert A. Heinlein

"We are but habits and memories we chose to carry along." ~ Uki D. Lucas


Popular Recent Articles