Functions - Discrete Mathematics

 

2.101 Introduction to functions

See references 1, 2

Definition:

A function is a relation between a set of inputs A and a set of outputs B.
Each input maps to exactly one output.
Multiple items in A can map to a single item in B.

Every element x in the domain of a function has one output f(x).




Example of a function:

  • each item A has an output in B




Example of a relationship that is not a function:
  • 65 has no output
  • 62 has 2 outputs




$$ f: A \rightarrow B $$
Read as: function f maps A to B.

$$ x \in A: x \rightarrow f(x) = y \ \ \ (y \in B) $$

Definition of domain:
A is the set of inputs and is called the domain of f.
We write:
$$ D_f = A $$


Definition of co-domain:
B is the set of outputs and is called the co-domain of f.
We write:
$$ coD_f = B $$

y is called the image of x,

whereas x is called the pre-image of y.

We write:

$$ f(x) = y $$


Definition of range:
R is the subset of B and a set of all outputs (images) and is called the range of f.
The range of a function is the set of all images.
The range of a function is a subset of its corresponding co-domain.

We write:
$$ R_f \subseteq coD_f $$


Example:

A = {0, 1, 2, 3, 4, ...}

B = {0, 1, 2, 3, 4, ...}

$ x \rightarrow 2x+1 $
$ D_f = A $
$ coD_f = B $
R = {1, 3, 5, 7, 9, ...}
f(0) = 1
f(1) = 3
Image of x, f(x) = y





Exercise:

$ f: Z \rightarrow Z \ with \  f(x) = |x| $ // integers, absolute value of x
$ D_f = Z $
$ coD_f = Z $
$ R_f = Z \{0\} = \{0, 1, 2, 3, ...\} $
f(-1) = f(1) = 1, hence pre-images of 1 = {-1, 1}


Exercise

$ g: R \rightarrow  R \ with \  g(x) = x^2 + 1$ 
$ D_g = R $ // real numbers
$ coD_g = R $
  • any number squared is positive
  • +1 makes for bigger than 1
$ R_g = [1, +\infty] $
g(-2) = g(2) = 5 hence, pre-images of 5 = {-2, 2}



Plotting Functions


see reference #3


Linear Functions

$$ f(x) = ax + b $$

  • straight line function
  • passes through the point (0, b)
  • a is the gradient
$$ f: R \rightarrow R \ with f(x) = ax + b $$

  • if gradient a > 0 then the function is increasing
    • $ x_1 < x_2 $ then $ f(x_1) < f(x_2) $




Quadratic Functions


$$ f(x) = ax^2 + bx = c $$

  • where a, b, and c are the numbers and a $ \neq $ 0






Exponential Function

$$ f(x)  = b^x \ where \ b > 0 \ and \ b \neq 1 $$

  • variable b is called the base of the function
  • Domain $ ]-\infty, \infty[ $
  • Range $ ]0, \infty[ $
  • Horizontal asymptote y= 0




Exponential decay function 









Laws of Exponents

$ b^x \cdot b^y  = b^{x+y} $

$ \frac{b^x}{b^y} = b^{x-y} $

$  (b^x)^y = b^{xy} $

$  (ab)^x = a^x \cdot b^x $

$ (\frac{a}{b})^x = \frac{a^x}{b^x} $

$ b^{-x} = \frac{1}{b^x} $

$ x^{\frac{m}{n}} = ( \sqrt[n]{x})^m  = \sqrt[n]{x^m} $


Natural Logarithm function

see reference 4




2.106 Injective and surjective functions

see reference 5

Injective (one-to-one) Functions

  • one-to-one function
  • Let $ f: A \rightarrow B $ be a function
    • Definition: f is said to be an injective (one-to-one) function if and only if:
      • for all $ a,b \in A $, if $ a \neq b $ then $ f(a) \neq f(b) $










Surjective (onto) functions





















Resources

  1. https://www.coursera.org/learn/uol-discrete-mathematics/lecture/dEASs/2-101-introduction
  2. https://www.coursera.org/learn/uol-discrete-mathematics/lecture/dEASs/2-101-introduction
  3. https://www.coursera.org/learn/uol-discrete-mathematics/lecture/LJ9wV/2-104-plotting-functions
  4. https://www.youtube.com/watch?v=8qs6QxGCIQU
  5. https://www.coursera.org/learn/uol-discrete-mathematics/lecture/XyWA9/2-106-injective-and-surjective-functions



As an Amazon Associate I earn from qualifying purchases.

master of many trades

Interesting spin on the old saying:

Jack of all trades, a master of none, 
I prefer better than a master of one.




As an Amazon Associate I earn from qualifying purchases.

Non-integer numbers conversion - Computational Mathematics CM1015

Non-integer numbers conversion


Example:

$ 17.375_{10} = 1*10^1 + 7*10^0 + 3*10^{-1} + 7*10^{-2} + 5*10^{-3} = $
$ = 10 + 7 + \frac{3}{10} + \frac{7}{100} + \frac{5}{1000} $

How do you convert decimal fractions to binary?


You convert the whole integer numbers separately:

$ 17_{10} = 10001_2 $

Then you convert fractional part 0.375_{10}:
Multiply by 2, see if you have a whole number 1:
0.375*2 = 0.75 = 0 + 0.75 
0.75*2   = 1.5   = 1 + 0.5 Multiply the remainder of 0.75
0.5 *2    = 1.0   = 1 + 0.   STOP

$ 0.375_{10} = 0. \color{red} {011}_2 $ 
$ 17.375_{10} = 10001. \color{red} {011}_2  $

How to convert a binary fractional number to a base 10 number?

$  10001. \color{red} {011}_2  = 1*2^4 + 0*2^3 + 0*2^2 +  0*2^1 + 1*2^0 + \color{red} { 0*2^{-1} + 1*2^{-2} + 1*2^{-3} }$
$  10001. \color{red} {011}_2  = 1*16+ 0*8 \ + 0*4 \  + 0*2 \ + 1*1 + \color{red} { 0* \frac{1}{2} + 1*\frac{1}{4} + 1*\frac{1}{8} }$
$ 10001. \color{red} {011}_2  = 16 + 1 + \color{red} { \frac{0}{2} + \frac{1}{4} + 1*\frac{1}{8} }$
$ 10001. \color{red} {011}_2  = 17 + \color{red} {   \frac{3}{8}   } $ 
$ 10001. \color{red} {011}_2  = 17. \color{red} { 375}_{10} $


In general:

$$ A_n A_{n-1} A_{n-2} ... A_0 . C_{-1} C_{-2} ... C_{-k} $$

for base b, and position n and k,

In decimal units corresponds to:


$$ A_n * b^n + A_{n-1} * b^{n-1} + ... +  A_0 * b^0 + C_{-1} * b^{-1} + C_{-2} * b^{-2} + ... + C_{-k} * b^{-k}   $$


Practice:
see reference 2

Convert the decimal number 11.625 into binary

$ 11 \color{red} {.625}_{10} $
$ 11_{10} = 1011_2 $
$  \color{red} {.625}_{10} = $
Multiply by 2 and carry over the remainder:
2*0.625 = 1.25 = 1 + 0.25
2*0.250 = 0.50 = 0 + 0.50
2*0.500 = 1.00 = 1 + 0.00 // STOP

$ 11 \color{red} {.625}_{10} = 1011. \color{red} {101}_2$






What is the decimal number 0.03125 in binary?

$ 0.03125_{10} = ? $ in  binary 
Multiply by 2 and carry over the remainder:

2 * 0.03125 = 0.0625 = 0 + 0.0625
2 * 0.06250 = 0.1250 = 0 + 0.1250
2 * 0.12500 = 0.2500 = 0 + 0.2500
2 * 0.25000 = 0.5000 = 0 + 0.5000
2 * 0.50000 = 1.0000 = 1 + 0.0000 // STOP

$ 0.03125_{10} = 0.00001_2 $





Operations with binary numbers

See reference 3

Addition of binary numbers


$ 101_2 + 111_2 = ? $

$ 1110 $ \\ carry-over numbers
$ 0101_2 + $
$ 0111_2 = $
$ \overline{1100}_2  $

$ = 1*8 + 1*4 + 0*2 + 0*1 = 12_{10} $

double-check in decimal: 5 + 7 = 12 
Q.E.D.

Subtraction of binary numbers


$ 110_2 - 101_2 = ? $


$ 110 - $ \\ 6 decimal
$ 002 -  $  \\ promoted numbers
$ 101 = $ \\ 5 decimal
$ \overline{0 0 1}_2 $ \\ 1 decimal

Multiplication of binary numbers

0*0 = 0
1*1 = 1
1*0 = 1


Exercise:

1111 * 11 = 101101
15 * 3 = 45





Division of binary numbers




Number bases webinar video

See reference 4






"The only time you are getting better is when you are stuck.
- So, embrace being stuck! "



Extra video: numbers 1

See reference 5

  • prime numbers
  • highest known prime number $ 2^{77232917} - 1$
  • exponentials
    • $ x^0 = 1 $
    • $ x^1 = x $
    • $ x^2 = x * x $
    • $ x^{-1} = \frac{1}{x} $
    • $ x^{-2} = \frac{1}{x*x} = \frac{1}{x^2} $
    • $ x^{-n} = \frac{1}{x^n} $



    Extra video: numbers 2

    see reference 6

  • base ten fractional
  • what is the lowest base you can have
    • base 2
  • conversion exercises




see reference 7




See reference 8







References

  1. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/wrj47/non-integer-numbers-conversion
  2. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/quiz/QW8GL/topic-1-lesson-3
  3. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/0qco4/operations-with-binary-numbers
  4. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/y71es/number-bases-webinar-video
  5. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/K02pr/extra-video-numbers-1
  6. https://www.coursera.org/learn/uol-cm1015-computational-mathematics/lecture/lHwNt/extra-video-numbers-2
  7. https://docs.google.com/spreadsheets/d/19zWX5qNcfVwG37VUSi0aeCMfNSOwhq1MMNtdwguyk5k/edit#gid=0
  8. https://calculator.name/baseconvert/quinary/decimal/1212



As an Amazon Associate I earn from qualifying purchases.

My favorite quotations..


“A man should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is for insects.”  by Robert A. Heinlein

"We are but habits and memories we chose to carry along." ~ Uki D. Lucas


Popular Recent Articles